Copied to
clipboard

G = C42.59D4order 128 = 27

41st non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.59D4, (C4×D4)⋊6C4, C4⋊Q810C4, C41D48C4, C425C41C2, C42.76(C2×C4), C23.504(C2×D4), (C22×C4).216D4, C42.6C432C2, C22.SD1622C2, C4⋊D4.139C22, C22⋊C8.135C22, C22.37(C8⋊C22), (C22×C4).636C23, (C2×C42).179C22, C22.26C24.7C2, C2.C42.4C22, C2.19(C42⋊C22), C2.10(C23.37D4), C2.19(C23.C23), C4⋊C4.14(C2×C4), (C2×D4).12(C2×C4), (C2×C4).1160(C2×D4), (C2×C4).93(C22⋊C4), (C2×C4).126(C22×C4), C22.190(C2×C22⋊C4), SmallGroup(128,246)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.59D4
C1C2C22C23C22×C4C2×C42C22.26C24 — C42.59D4
C1C22C2×C4 — C42.59D4
C1C22C2×C42 — C42.59D4
C1C2C22C22×C4 — C42.59D4

Generators and relations for C42.59D4
 G = < a,b,c,d | a4=b4=c4=1, d2=b-1, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b-1, bd=db, dcd-1=b-1c-1 >

Subgroups: 308 in 126 conjugacy classes, 44 normal (26 characteristic)
C1, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C2.C42, C2.C42, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C4×D4, C4×D4, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4, C22.SD16, C425C4, C42.6C4, C22.26C24, C42.59D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C8⋊C22, C23.C23, C23.37D4, C42⋊C22, C42.59D4

Character table of C42.59D4

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D
 size 11112288222244448888888888
ρ111111111111111111111111111    trivial
ρ2111111-1-11111111111-1-111-1-1-1-1    linear of order 2
ρ3111111-111-1-11-1-11-11-1-111-11-11-1    linear of order 2
ρ41111111-11-1-11-1-11-11-11-11-1-11-11    linear of order 2
ρ51111111111111111-1-111-1-1-1-1-1-1    linear of order 2
ρ6111111-1-111111111-1-1-1-1-1-11111    linear of order 2
ρ7111111-111-1-11-1-11-1-11-11-11-11-11    linear of order 2
ρ81111111-11-1-11-1-11-1-111-1-111-11-1    linear of order 2
ρ91111-1-1-11-111-11-11-1-i-i1-1ii-i-iii    linear of order 4
ρ101111-1-1-11-111-11-11-1ii1-1-i-iii-i-i    linear of order 4
ρ111111-1-11-1-111-11-11-1-i-i-11iiii-i-i    linear of order 4
ρ121111-1-11-1-111-11-11-1ii-11-i-i-i-iii    linear of order 4
ρ131111-1-111-1-1-1-1-1111i-i-1-1-iii-i-ii    linear of order 4
ρ141111-1-111-1-1-1-1-1111-ii-1-1i-i-iii-i    linear of order 4
ρ151111-1-1-1-1-1-1-1-1-1111i-i11-ii-iii-i    linear of order 4
ρ161111-1-1-1-1-1-1-1-1-1111-ii11i-ii-i-ii    linear of order 4
ρ172222-2-2002-2-222-2-220000000000    orthogonal lifted from D4
ρ182222-2-2002222-22-2-20000000000    orthogonal lifted from D4
ρ1922222200-2-2-2-222-2-20000000000    orthogonal lifted from D4
ρ2022222200-222-2-2-2-220000000000    orthogonal lifted from D4
ρ214-4-444-400000000000000000000    orthogonal lifted from C8⋊C22
ρ224-4-44-4400000000000000000000    orthogonal lifted from C8⋊C22
ρ234-44-40000-4i004i00000000000000    complex lifted from C42⋊C22
ρ2444-4-400000-4i4i000000000000000    complex lifted from C23.C23
ρ254-44-400004i00-4i00000000000000    complex lifted from C42⋊C22
ρ2644-4-4000004i-4i000000000000000    complex lifted from C23.C23

Smallest permutation representation of C42.59D4
On 32 points
Generators in S32
(1 25 15 22)(2 30 16 19)(3 27 9 24)(4 32 10 21)(5 29 11 18)(6 26 12 23)(7 31 13 20)(8 28 14 17)
(1 7 5 3)(2 8 6 4)(9 15 13 11)(10 16 14 12)(17 23 21 19)(18 24 22 20)(25 31 29 27)(26 32 30 28)
(2 14 16 8)(3 13)(4 6 10 12)(7 9)(17 23 28 26)(18 22)(19 32 30 21)(20 31)(24 27)(25 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,25,15,22)(2,30,16,19)(3,27,9,24)(4,32,10,21)(5,29,11,18)(6,26,12,23)(7,31,13,20)(8,28,14,17), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28), (2,14,16,8)(3,13)(4,6,10,12)(7,9)(17,23,28,26)(18,22)(19,32,30,21)(20,31)(24,27)(25,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;

G:=Group( (1,25,15,22)(2,30,16,19)(3,27,9,24)(4,32,10,21)(5,29,11,18)(6,26,12,23)(7,31,13,20)(8,28,14,17), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28), (2,14,16,8)(3,13)(4,6,10,12)(7,9)(17,23,28,26)(18,22)(19,32,30,21)(20,31)(24,27)(25,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,25,15,22),(2,30,16,19),(3,27,9,24),(4,32,10,21),(5,29,11,18),(6,26,12,23),(7,31,13,20),(8,28,14,17)], [(1,7,5,3),(2,8,6,4),(9,15,13,11),(10,16,14,12),(17,23,21,19),(18,24,22,20),(25,31,29,27),(26,32,30,28)], [(2,14,16,8),(3,13),(4,6,10,12),(7,9),(17,23,28,26),(18,22),(19,32,30,21),(20,31),(24,27),(25,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])

Matrix representation of C42.59D4 in GL8(𝔽17)

40000000
04000000
00400000
00040000
0000011616
000016010
0000001616
00000021
,
115000000
016000000
001620000
00010000
00004000
00000400
00000040
00000004
,
10000000
116000000
001620000
001610000
00001007
0000016011
0000001313
00000004
,
001620000
001610000
10000000
116000000
0000016137
00000106
000011601
000002016

G:=sub<GL(8,GF(17))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,1,16,2,0,0,0,0,16,0,16,1],[1,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,0,0,0,0,0,7,11,13,4],[0,0,1,1,0,0,0,0,0,0,0,16,0,0,0,0,16,16,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,16,1,16,2,0,0,0,0,13,0,0,0,0,0,0,0,7,6,1,16] >;

C42.59D4 in GAP, Magma, Sage, TeX

C_4^2._{59}D_4
% in TeX

G:=Group("C4^2.59D4");
// GroupNames label

G:=SmallGroup(128,246);
// by ID

G=gap.SmallGroup(128,246);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1430,520,1123,1018,248,1971]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^-1,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,b*d=d*b,d*c*d^-1=b^-1*c^-1>;
// generators/relations

Export

Character table of C42.59D4 in TeX

׿
×
𝔽